首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   0篇
测绘学   1篇
大气科学   5篇
地球物理   22篇
地质学   99篇
海洋学   1篇
天文学   30篇
综合类   1篇
自然地理   11篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   13篇
  2005年   8篇
  2004年   8篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
41.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   
42.
The composite Oberkirch pluton consists of three compositionally different units of peraluminous biotite granite. The northern unit is relatively mafic (SiO2∼64%) and lacks cordierite. The more felsic central and southern units (SiO2=67.8 to 70.4%) can only be distinguished from each other by the occurrence of cordierite in the former. Mafic microgranular enclaves of variable composition, texture and size occur in each of these units and are concentrated in their central domains. Most abundant are large (dm to m) hornblende-bearing enclaves with dioritic to tonalitic compositions (SiO2=50.8 to 56.3 wt%; Mg#=63 to 41) and fine grained doleritic textures that suggest chilling against the host granite magma. Some of these enclaves are mantled by hybrid zones. Less common are microtonalitic enclaves containing biotite as the only primary mafic phase (SiO2=53.7 to 64.4%) and small hybrid tonalitic to granodioritic enclaves and schlieren. Synplutonic dioritic dikes (up to 6 m thick) with hybrid transition zones to the host granite occur in the southern unit of the pluton. In chemical variation diagrams, samples from unmodified hornblende-bearing mafic enclaves and dikes form continuous trends that are compatible with an origin by fractionation of olivine, clinopyroxene, hornblende and plagioclase. Chemical and initial isotopic signatures (e.g. high Mg#, low Na2O, ɛNd=−1.2 to −5.1, 87Sr/86Sr=0.7055 to 0.7080, δ18O=8.0 to 8.8‰) exclude an origin by partial melting from a mafic meta-igneous source but favour derivation from a heterogeneous enriched lithospheric mantle. Samples from the granitic host rocks do not follow the chemical variation trends defined by the diorites but display large scatter. In addition, their initial isotopic characteristics (ɛNd=−4.5 to −6.8, 87Sr/86Sr=0.7071 to 0.7115, δ18O=9.9 to 11.9‰) show little overlap with those of the diorites. Most probably, the granitic magmas were derived from metapelitic sources characterized by variable amounts of garnet and plagioclase. This is suggested by relatively high molar ratios of Al2O3/(MgO+FeOtot) and K2O/Na2O, in combination with low ratios of CaO/(MgO+FeOtot), variable values of Sr/Nd, Eu/Eu*[=Eucn/(Smcn × Gdcn)0.5] and (Tb/Yb)cn (cn=chondrite-normalized) as well as variable abundances of Sc and Y. Whole-rock initial isotopic signatures of mafic microtonalitic enclaves (ɛNd=−4.6 to −5.2; 87Sr/86Sr=0.7060 to 0.7073; δ18O ∼8.1‰) are similar to those of the low ɛNd diorites. Plagioclase concentrates from a granite sample and a mafic microtonalitic enclave are characterized by initial 87Sr/86Sr ratios that are significantly higher than those of their bulk rock systems suggesting incorporation of high 87Sr/86Sr crustal material into the magmas. Field relationships and petrographic evidence suggest that the Oberkirch pluton originated by at least three pulses of granitic magma containing mafic magma globules. In-situ hybridization between the different magmas was limited. Late injection of dioritic magma into the almost solidified granitic southern unit resulted in the formation of more or less continuous synplutonic dikes surrounded by relatively thin hybrid zones. Received: 30 April 1999 / Accepted: 6 August 1999  相似文献   
43.
M. Langer 《Engineering Geology》1999,52(3-4):257-269
Today, a large amount of knowledge is available concerning various sites of potential high active waste (HAW) repositories in salt media. Domal Zechstein salt formations have been examined at several sites in Germany. Extensive R&D work was initiated in the former Asse Salt Mine in order to explore the suitability of salt for waste isolation by laboratory tests, theoretical studies and in-situ tests with test results forming a technological base for future repository development.

Resulting from the inhomogeneity of salt structures the demanded safety of a permanent repository for radioactive wastes can be demonstrated only by a specific site analysis in which the entire system, “the geological situation, the repository, and the form and amount of the wastes” and their interrelationships are taken into consideration.

The site analysis has three essential tasks: (1) Assessment of the thermomechanical load capacity of the host rock, so that deposition strategies can be determined for the site; (2) Determination of the safe dimensions of the mine (e.g. stability of the caverns and safety of the operations); and (3) Evaluation of the barriers and the long-term safety analysis for the authorization procedure.

The geotechnical stability analysis is a critical part of the safety assessment. Engineering–geological study of the site, laboratory and in situ-experiments, geomechanical modelling, and numerical static calculations comprise such an analysis.

Within a scenario analysis — according to the multi-barrier principle, the geological setting is checked to be able to contribute significantly to the waste isolation over long periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with geomechanical and hydrogeological models. The proper idealization of the host rock in a computational model is the basis of a realistic calculation of stress distribution and excavation damage effects. The determination of water permeability along discontinuities is necessary in order to evaluate the barrier efficiency of each host rock.

In this paper some important processes for the performance assessment are described, namely creep and fracturing, permeability and infiltration, and halokinesis and subrosion.

For the future, the role and contributions of geoscientific and rock mechanics work within the safety assessment issues (e.g. geomechanical safety indicators) must be identified in greater detail, e.g. considerations of geomechanical natural analogy for calibration of constitutive laws.  相似文献   

44.
Soil loss caused by erosion has enormous economic and social impacts. Splash effects of rainfall are an important driver of erosion processes; however, effects of vegetation on splash erosion are still not fully understood. Splash erosion processes under vegetation are investigated by means of throughfall kinetic energy (TKE). Previous studies on TKE utilized a heterogeneous set of plant and canopy parameters to assess vegetation's influence on erosion by rain splash but remained on individual plant- or plot-levels. In the present study we developed a method for the area-wide estimation of the influence of vegetation on TKE using remote sensing methods. In a literature review we identified key vegetation variables influencing splash erosion and developed a conceptual model to describe the interaction of vegetation and raindrops. Our model considers both amplifying and protecting effect of vegetation layers according to their height above the ground and aggregates them into a new indicator: the Vegetation Splash Factor (VSF). It is based on the proportional contribution of drips per layer, which can be calculated via the vegetation cover profile from airborne LiDAR datasets. In a case study, we calculated the VSF using a LiDAR dataset for La Campana National Park in central Chile. The studied catchment comprises a heterogeneous mosaic of vegetation layer combinations and types and is hence well suited to test the approach. We calculated a VSF map showing the relation between vegetation structure and its expected influence on TKE. Mean VSF was 1.42, indicating amplifying overall effect of vegetation on TKE that was present in 81% of the area. Values below 1 indicating a protective effect were calculated for 19% of the area. For future work, we recommend refining the weighting factor by calibration to local conditions using field-reference data and comparing the VSF with TKE field measurements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
45.
The electronic absorption spectra of natural uvarovite containing 62 mole% of the Cr3+ end-member were studied at pressures between 10−4 and ca. 13 GPa using DAC techniques combined with microscope spectrometric device. With increasing pressure, a barochromic effect with change from green to red color of the garnet specimen was observed. This change could be interpreted on the basis of the spectra and the data points derived in an ICE color card. The evaluation of crystal field data from the spectra showed that 10Dq of chromium increases on pressure while the Racah parameter B, and thus the nature of the chemical bond of Cr–O does not change significantly.  相似文献   
46.
Most of the optical light from AM Her systems is cyclotron radiation. Simple models for the spectrum and polarization are successful for some systems, but in others the spectrum rolls over more gently at high frequencies and is polarized over a wider range of frequencies than the models predict. This paper considers the emission from both the sides and top of the accretion column and the effects of oscillations in the shock height. These features lead to a slower roll over at high frequencies than is found in the simple models, but it is still not as flat as in some of the AM Her systems.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
47.
We examine the biases induced on cosmological parameters when the presence of secondary anisotropies is not taken into account in cosmic microwave background analyses. We first develop an exact analytical expression for computing the biases on parameters when any additive signal is neglected in the analysis. We then apply it in the context of the forthcoming Planck experiment. For illustration, we investigate the effect of the sole residual thermal Sunyaev–Zel'dovich signal that remains after cluster extraction. We find, in particular, that analyses neglecting the presence of this contribution introduce on the cosmological parameters n s and τ biases, at least ∼6.5 and 2.9 times their 1σ confidence intervals. The Ωb parameter is also biased to a lesser extent.  相似文献   
48.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   
49.
Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this “gravitational tectonics stress” must have formerly existed as gravitational potential energy contained in the stress-causing density structure.According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event.An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip.  相似文献   
50.
The 57Fe Mössbauer spectra of deerites of different chemical composition, taken at several temperatures, show that Fe2+ and Fe3+ occupy all the six-coordinated lattice sites with a preference of Fe3+ probably for the M(1) to M(3) positions, and a preference of Fe2+ probably for the M(4) to M(6) and the M(7) to M(9) sites. The room and high temperature spectra reveal absorption patterns due to thermally activated Fe2+ → Fe3+ electron delocalization. The extent of electron delocalization is dependent on the chemical composition, e.g., the amount of ions (Mg, Mn, Al) substituting for Fe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号